Stresa, Italy, 25-27 April 2007 EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES
نویسندگان
چکیده
The reported research work presents numerical studies validated by experimental results of a flat micro heat pipe with sintered copper wick structure. The objectives of this research were to produce and demonstrate the efficiency of the passive cooling technology (heat pipe) integrated in a very thin electronic substrate that is a part of a multifunctional 3-D electronic package. The enhanced technology is dedicated to the thermal management of high dissipative microsystems having heat densities of more than 10W/cm2. Future applications are envisaged in the avionics sector. A 2D numerical hydraulic model has been developed to investigate the performance of a very thin flat micro heat pipe with sintered copper wick structure, using water as a refrigerant. Finite difference method has been used to develop the model. The model has been used to determine the mass transfer and fluid flow in order to evaluate the limits of heat transport capacity as functions of the dimensions of the wick and the vapour space and for various copper spheres radii.
منابع مشابه
Evaluation of the thermal and hydraulic performances of a very thin sintered copper flat heat pipe for 3D microsystem packages
The reported research work presents numerical studies validated by experimental results of a flat micro heat pipe with sintered copper wick structure. The objectives of this research were to produce and demonstrate the efficiency of the passive cooling technology (heat pipe) integrated in a very thin electronic substrate that is a part of a multifunctional 3-D electronic package. The enhanced t...
متن کاملFluid flow and heat transfer characteristics in a curved rectangular duct using Al2O3-water nanofluid
In the present research, the laminar forced convective heat transfer and fluid flow characteristics for Al2O3-water nanofluid flowing in different bend (i.e., 180o and 90o) pipes have been investigated numerically in a three-dimensional computational domain using the finite volume technique. The effects of different pertinent parameters, such as the Reynolds number of the duct, volume fraction ...
متن کاملThermal-hydraulic performance of convective boiling jet array impingement
jet impingement boiling is investigated with regard to heat transfer and pressure drop performance using a novel laser sintered 3D printed jet impingement manifold design. Water was the working fluid at atmospheric pressure with inlet subcooling of 7 o C. The convective boiling performance of the impinging jet system was investigated for a flat copper target surface for 2700≤Re≤5400. The result...
متن کاملThermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model
Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very f...
متن کاملSynthesis and characterization of high flux and antibacterial film nanocomposite based on epoxy-zeolite NaA
A high flux thin-film nanocomposite membrane epoxy/ zeolite NaA nanocomposite films prepared by using ultrasonic mixing and spin coating. The synthesized nanocomposites film was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravity analysis (TGA), and FTIR spectroscopy. Water softener and water flux characteristics of the epoxy/ zeolite NaA nanocomposite ...
متن کامل